Existence in the Large for Riemann Problems for Systems of Conservation Laws

نویسنده

  • MICHAEL SEVER
چکیده

An existence theorem in the large is obtained for the Riemann problem for nonlinear systems of conservation laws. Our principal assumptions are strict hyperbolicity, genuine nonlinearity in the strong sense, and the existence of a convex entropy function. The entropy inequality is used to obtain an a priori estimate of the strengths of the shocks and refraction waves forming a solution; existence of such a solution then follows by an application of finite-dimensional degree theory. The case of a single degenerate field is also included, with an additional assumption on the existence of Riemann invariants. 1. Main theorem. We consider initial-value problems for nonlinear systems of conservation laws of the form (1.1) ut + f(u)z =0, oo < x < oo, t > 0, u, f vectors of dimension n, / a smooth function of u, with given initial data of special form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Nonlinear Resonance in Systems of Conservation Laws *

The Riemann problem for a general inhomogeneous system of conservation laws is solved in a neighborhood of a state at which one of the nonlinear waves in the problem takes on a zero speed. The inhomogeneity is modeled by a linearly degenerate field. The solution ofthe Riemann problem determines the nature of wave interactions, and thus the Riemann problem serves as a canonical form for nonlinea...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Large-time Behavior of Entropy Solutions of Conservation Laws

We are concerned with the large-time behavior of discontinuous entropy solutions for hyperbolic systems of conservation laws. We present two analytical approaches and explore their applications to the asymptotic problems for discontinuous entropy solutions. These approaches allow the solutions of arbitrarily large oscillation without apriori assumption on the ways from which the solutions come....

متن کامل

Conservation laws with discontinuous flux

We consider an hyperbolic conservation law with discontinuous flux. Such partial differential equation arises in different applicative problems, in particular we are motivated by a model of traffic flow. We provide a new formulation in terms of Riemann Solvers. Moreover, we determine the class of Riemann Solvers which provide existence and uniqueness of the corresponding weak entropic solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010